Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Front Immunol ; 14: 998233, 2023.
Article in English | MEDLINE | ID: covidwho-2264056

ABSTRACT

Recently accumulating evidence has highlighted the rare occurrence of COVID-19 vaccination-induced inflammation in the central nervous system. However, the precise information on immune dysregulation related to the COVID-19 vaccination-associated autoimmunity remains elusive. Here we report a case of encephalitis temporally associated with COVID-19 vaccination, where single-cell RNA sequencing (scRNA-seq) analysis was applied to elucidate the distinct immune signature in the peripheral immune system. Peripheral blood mononuclear cells (PBMCs) were analyzed using scRNA-seq to clarify the cellular components of the patients in the acute and remission phases of the disease. The data obtained were compared to those acquired from a healthy cohort. The scRNA-seq analysis identified a distinct myeloid cell population in PBMCs during the acute phase of encephalitis. This specific myeloid population was detected neither in the remission phase of the disease nor in the healthy cohort. Our findings illustrate induction of a unique myeloid subset in encephalitis temporally associated with COVID-19 vaccination. Further research into the dysregulated immune signature of COVID-19 vaccination-associated autoimmunity including the cerebrospinal fluid (CSF) cells of central nervous system (CNS) is warranted to clarify the pathogenic role of the myeloid subset observed in our study.


Subject(s)
COVID-19 , Encephalitis , Humans , COVID-19 Vaccines , Leukocytes, Mononuclear , Single-Cell Gene Expression Analysis , Myeloid Cells , Vaccination
2.
Clin Rev Allergy Immunol ; 2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-2252392

ABSTRACT

The immune system is the central regulator of tissue homeostasis, ensuring tissue regeneration and protection against both pathogens and the neoformation of cancer cells. Its proper functioning requires homeostatic properties, which are maintained by an adequate balance of myeloid and lymphoid responses. Aging progressively undermines this ability and compromises the correct activation of immune responses, as well as the resolution of the inflammatory response. A subclinical syndrome of "homeostatic frailty" appears as a distinctive trait of the elderly, which predisposes to immune debilitation and chronic low-grade inflammation (inflammaging), causing the uncontrolled development of chronic and degenerative diseases. The innate immune compartment, in particular, undergoes to a sequela of age-dependent functional alterations, encompassing steps of myeloid progenitor differentiation and altered responses to endogenous and exogenous threats. Here, we will review the age-dependent evolution of myeloid populations, as well as their impact on frailty and diseases of the elderly.

3.
Cytokine ; 161: 156084, 2023 01.
Article in English | MEDLINE | ID: covidwho-2120084

ABSTRACT

The exacerbation of the inflammatory response caused by SARS-CoV-2 in adults promotes the production of soluble mediators that could act as diagnostic and prognostic biomarkers for COVID-19. Among the potential biomarkers, the soluble triggering receptor expressed on myeloid cell-1 (sTREM-1) has been described as a predictor of inflammation severity. The aim was to evaluate sTREM-1 and cytokine serum concentrations in pediatric patients during the acute and convalescent phases of COVID-19. This was a prospective study that included 53 children/adolescents with acute COVID-19 (Acute-CoV group); 54 who recovered from COVID-19 (Post-CoV group) and 54 controls (Control group). Preexisting chronic conditions were present in the three groups, which were defined as follows: immunological diseases, neurological disorders, and renal and hepatic failures. The three groups were matched by age, sex, and similar preexisting chronic conditions. No differences in sTREM-1 levels were detected among the groups or when the groups were separately analyzed by preexisting chronic conditions. However, sTREM-1 analysis in the seven multisystemic inflammatory syndrome children (MIS-C) within the Acute-Cov group showed that sTREM-1 concentrations were higher in MIS-C vs non-MIS-C acute patients. Then, the receiver operating curve analysis (ROC) performed with MIS-C acute patients revealed a significant AUC of 0.870, and the sTREM-1 cutoff value of > 5781 pg/mL yielded a sensitivity of 71.4 % and a specificity of 91.3 % for disease severity, and patients with sTREM-1 levels above this cutoff presented an elevated risk for MIS-C development in 22.85-fold (OR = 22.85 [95 % CI 1.64-317.5], p = 0.02). The cytokine analyses in the acute phase revealed that IL-6, IL-8, and IL-10 concentrations were elevated regardless of whether the patient developed MIS-C, and those levels decreased in the convalescent phase, even when compared with controls. Spearman correlation analysis generated positive indexes between sTREM-1 and IL-12 and TNF-α concentrations, only within the Acute-CoV group. Our findings revealed that sTREM-1 in pediatric patients has good predictive accuracy as an early screening tool for surveillance of MIS-C cases, even in patients with chronic underlying conditions.


Subject(s)
COVID-19 , Receptors, Immunologic , Adult , Humans , Child , Adolescent , Triggering Receptor Expressed on Myeloid Cells-1 , Membrane Glycoproteins , Prospective Studies , COVID-19/diagnosis , SARS-CoV-2 , Biomarkers , Cytokines
4.
Stem Cell Res Ther ; 13(1): 464, 2022 09 07.
Article in English | MEDLINE | ID: covidwho-2009458

ABSTRACT

Small airway infections caused by respiratory viruses are some of the most prevalent causes of illness and death. With the recent worldwide pandemic due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is currently a push in developing models to better understand respiratory diseases. Recent advancements have made it possible to create three-dimensional (3D) tissue-engineered models of different organs. The 3D environment is crucial to study physiological, pathophysiological, and immunomodulatory responses against different respiratory conditions. A 3D human tissue-engineered lung model that exhibits a normal immunological response against infectious agents could elucidate viral and host determinants. To create 3D small airway lung models in vitro, resident epithelial cells at the air-liquid interface are co-cultured with fibroblasts, myeloid cells, and endothelial cells. The air-liquid interface is a key culture condition to develop and differentiate airway epithelial cells in vitro. Primary human epithelial and myeloid cells are considered the best 3D model for studying viral immune responses including migration, differentiation, and the release of cytokines. Future studies may focus on utilizing bioreactors to scale up the production of 3D human tissue-engineered lung models. This review outlines the use of various cell types, scaffolds, and culture conditions for creating 3D human tissue-engineered lung models. Further, several models used to study immune responses against respiratory viruses, such as the respiratory syncytial virus, are analyzed, showing how the microenvironment aids in understanding immune responses elicited after viral infections.


Subject(s)
COVID-19 , Virus Diseases , Endothelial Cells , Humans , Immunity , Lung , SARS-CoV-2
5.
NTIS; 2020.
Non-conventional in English | NTIS | ID: grc-753749

ABSTRACT

In Year Three of the funded grant, we have substantial progress in the following critical areas: 1). As noted in the project narrative, we generated four different lines of mice to directly test the hypothesis that RAGE and DIAPH1 contribute to the pathogenesis of diabetes-associated nephropathy in the podocytes and/or in myeloid cells/macrophages. All of the mouse lines are now generated and largely completed (mice sacrificed) and samples being evaluation by Dr DAgati. There are no new pending mice to generate all are generated and on time course. 2). We have determined that the small molecule RAGE/DIAPH1 antagonist is best administered orally and that the RAGE antagonist survives the medicated chow pelleting, heating and irradiation. Our first data on treated vs. untreated male and female diabetic mice illustrates reduction in mesangial sclerosis, reduced thickening of the glomerular basement membrane and reduction in podocyte effacement in diabetic mice receiving RAGE229 medicated chow (vs vehicle). Additional mice are on study and time course at this time to complete the indicated enrollment.3). For transcriptomics and metabolomics/lipidomics assay, Dr. Ramasamy will be testing the macrophages from the mice through the time course and he has verified all of his experimental systems for the performance of the outlined studies. Dr. Ramasamy identifies substantial progress in the development and validation of metabolomics and lipidomics assays here at NYU and in transcriptomic data (all on macrophages) in order to understand detailed mechanisms of the role of these molecules in the diabetic kidney. Taken together, despite the >3 month shutdown due to COVID19 our work in Year 3 has been productive and we await tissue and other analyses, as above, to render final conclusions.

6.
National Technical Information Service; 2020.
Non-conventional in English | National Technical Information Service | ID: grc-753621

ABSTRACT

Pulmonary fibrosis (PF) is a heterogeneous clinical syndrome that represents the end-stage of chronic interstitial lung diseases. Dozens of different occupational, environmental, immune and genetic risk factors have been associated with PF, and through the past several decades, risk factor exposures have been the driving force in the diagnostic classification of PF, thus in the current paradigm, there are dozens of different diagnoses of pulmonary fibrosis. This emphasis on distinction has focused much attention on the most common form of this syndrome (Idiopathic Pulmonary Fibrosis, IPF), which comprises only 20 of PF patients. Today there are2 modestly effective FDA-approved treatments for IPF;however, for the 80 of PF patients with other diagnoses, there are no known effective treatments.

11.
12.
Front Immunol ; 12: 781432, 2021.
Article in English | MEDLINE | ID: covidwho-1634671

ABSTRACT

Despite many studies on the immune characteristics of Coronavirus disease 2019 (COVID-19) patients in the progression stage, a detailed understanding of pertinent immune cells in recovered patients is lacking. We performed single-cell RNA sequencing on samples from recovered COVID-19 patients and healthy controls. We created a comprehensive immune landscape with more than 260,000 peripheral blood mononuclear cells (PBMCs) from 41 samples by integrating our dataset with previously reported datasets, which included samples collected between 27 and 47 days after symptom onset. According to our large-scale single-cell analysis, recovered patients, who had severe symptoms (severe/critical recovered), still exhibited peripheral immune disorders 1-2 months after symptom onset. Specifically, in these severe/critical recovered patients, human leukocyte antigen (HLA) class II and antigen processing pathways were downregulated in both CD14 monocytes and dendritic cells compared to healthy controls, while the proportion of CD14 monocytes increased. These may lead to the downregulation of T-cell differentiation pathways in memory T cells. However, in the mild/moderate recovered patients, the proportion of plasmacytoid dendritic cells increased compared to healthy controls, accompanied by the upregulation of HLA-DRA and HLA-DRB1 in both CD14 monocytes and dendritic cells. In addition, T-cell differentiation regulation and memory T cell-related genes FOS, JUN, CD69, CXCR4, and CD83 were upregulated in the mild/moderate recovered patients. Further, the immunoglobulin heavy chain V3-21 (IGHV3-21) gene segment was preferred in B-cell immune repertoires in severe/critical recovered patients. Collectively, we provide a large-scale single-cell atlas of the peripheral immune response in recovered COVID-19 patients.


Subject(s)
COVID-19/immunology , Dendritic Cells/immunology , Memory T Cells/immunology , Monocytes/immunology , RNA-Seq , SARS-CoV-2/immunology , Single-Cell Analysis , COVID-19/genetics , Female , Humans , Male
13.
Expert Rev Mol Med ; 23: e18, 2021 11 26.
Article in English | MEDLINE | ID: covidwho-1537242

ABSTRACT

Alveolar macrophages (AMs) are lung-resident myeloid cells that sit at the interface of the airway and lung tissue. Under homeostatic conditions, their primary function is to clear debris, dead cells and excess surfactant from the airways. They also serve as innate pulmonary sentinels for respiratory pathogens and environmental airborne particles and as regulators of pulmonary inflammation. However, they have not typically been viewed as primary therapeutic targets for respiratory diseases. Here, we discuss the role of AMs in various lung diseases, explore the potential therapeutic strategies to target these innate cells and weigh the potential risks and challenges of such therapies. Additionally, in the context of the COVID-19 pandemic, we examine the role AMs play in severe disease and the therapeutic strategies that have been harnessed to modulate their function and protect against severe lung damage. There are many novel approaches in development to target AMs, such as inhaled antibiotics, liposomal and microparticle delivery systems, and host-directed therapies, which have the potential to provide critical treatment to patients suffering from severe respiratory diseases, yet there is still much work to be done to fully understand the possible benefits and risks of such approaches.


Subject(s)
COVID-19 , Macrophages, Alveolar , Humans , Lung , Pandemics , SARS-CoV-2
14.
Front Immunol ; 12: 738093, 2021.
Article in English | MEDLINE | ID: covidwho-1518484

ABSTRACT

Disease caused by SARS-CoV-2 coronavirus (COVID-19) led to significant morbidity and mortality worldwide. A systemic hyper-inflammation characterizes severe COVID-19 disease, often associated with acute respiratory distress syndrome (ARDS). Blood biomarkers capable of risk stratification are of great importance in effective triage and critical care of severe COVID-19 patients. Flow cytometry and next-generation sequencing were done on peripheral blood cells and urokinase-type plasminogen activator receptor (suPAR), and cytokines were measured from and mass spectrometry-based proteomics was done on plasma samples from an Indian cohort of COVID-19 patients. Publicly available single-cell RNA sequencing data were analyzed for validation of primary data. Statistical analyses were performed to validate risk stratification. We report here higher plasma abundance of suPAR, expressed by an abnormally expanded myeloid cell population, in severe COVID-19 patients with ARDS. The plasma suPAR level was found to be linked to a characteristic plasma proteome, associated with coagulation disorders and complement activation. Receiver operator characteristic curve analysis to predict mortality identified a cutoff value of suPAR at 1,996.809 pg/ml (odds ratio: 2.9286, 95% confidence interval 1.0427-8.2257). Lower-than-cutoff suPAR levels were associated with a differential expression of the immune transcriptome as well as favorable clinical outcomes, in terms of both survival benefit (hazard ratio: 0.3615, 95% confidence interval 0.1433-0.912) and faster disease remission in our patient cohort. Thus, we identified suPAR as a key pathogenic circulating molecule linking systemic hyperinflammation to the hypercoagulable state and stratifying clinical outcomes in severe COVID-19 patients with ARDS.


Subject(s)
COVID-19/blood , Receptors, Urokinase Plasminogen Activator/blood , SARS-CoV-2 , Adult , Aged , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/immunology , Blood Proteins/analysis , COVID-19/immunology , Cytokines/blood , Humans , Inflammation/blood , Inflammation/immunology , Middle Aged , Myeloid Cells/immunology , Proteome/analysis , Randomized Controlled Trials as Topic , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/immunology , Severity of Illness Index , Young Adult
16.
Front Cell Dev Biol ; 9: 668131, 2021.
Article in English | MEDLINE | ID: covidwho-1278384

ABSTRACT

Bruton's tyrosine kinase (BTK) was discovered due to its importance in B cell development, and it has a critical role in signal transduction downstream of the B cell receptor (BCR). Targeting of BTK with small molecule inhibitors has proven to be efficacious in several B cell malignancies. Interestingly, recent studies reveal increased BTK protein expression in circulating resting B cells of patients with systemic autoimmune disease (AID) compared with healthy controls. Moreover, BTK phosphorylation following BCR stimulation in vitro was enhanced. In addition to its role in BCR signaling, BTK is involved in many other pathways, including pattern recognition, Fc, and chemokine receptor signaling in B cells and myeloid cells. This broad involvement in several immunological pathways provides a rationale for the targeting of BTK in the context of inflammatory and systemic AID. Accordingly, numerous in vitro and in vivo preclinical studies support the potential of BTK targeting in these conditions. Efficacy of BTK inhibitors in various inflammatory and AID has been demonstrated or is currently evaluated in clinical trials. In addition, very recent reports suggest that BTK inhibition may be effective as immunosuppressive therapy to diminish pulmonary hyperinflammation in coronavirus disease 2019 (COVID-19). Here, we review BTK's function in key signaling pathways in B cells and myeloid cells. Further, we discuss recent advances in targeting BTK in inflammatory and autoimmune pathologies.

17.
Immunity ; 54(6): 1304-1319.e9, 2021 06 08.
Article in English | MEDLINE | ID: covidwho-1246001

ABSTRACT

Despite mounting evidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) engagement with immune cells, most express little, if any, of the canonical receptor of SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2). Here, using a myeloid cell receptor-focused ectopic expression screen, we identified several C-type lectins (DC-SIGN, L-SIGN, LSECtin, ASGR1, and CLEC10A) and Tweety family member 2 (TTYH2) as glycan-dependent binding partners of the SARS-CoV-2 spike. Except for TTYH2, these molecules primarily interacted with spike via regions outside of the receptor-binding domain. Single-cell RNA sequencing analysis of pulmonary cells from individuals with coronavirus disease 2019 (COVID-19) indicated predominant expression of these molecules on myeloid cells. Although these receptors do not support active replication of SARS-CoV-2, their engagement with the virus induced robust proinflammatory responses in myeloid cells that correlated with COVID-19 severity. We also generated a bispecific anti-spike nanobody that not only blocked ACE2-mediated infection but also the myeloid receptor-mediated proinflammatory responses. Our findings suggest that SARS-CoV-2-myeloid receptor interactions promote immune hyperactivation, which represents potential targets for COVID-19 therapy.


Subject(s)
COVID-19/metabolism , COVID-19/virology , Host-Pathogen Interactions , Lectins, C-Type/metabolism , Membrane Proteins/metabolism , Myeloid Cells/immunology , Myeloid Cells/metabolism , Neoplasm Proteins/metabolism , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , COVID-19/genetics , Cell Line , Cytokines , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Inflammation Mediators/metabolism , Lectins, C-Type/chemistry , Membrane Proteins/chemistry , Models, Molecular , Neoplasm Proteins/chemistry , Protein Binding , Protein Conformation , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship
18.
Front Immunol ; 12: 631226, 2021.
Article in English | MEDLINE | ID: covidwho-1121320

ABSTRACT

Coronavirus disease-2019 (COVID-19) is a novel respiratory disease induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It remains poorly understood how the host immune system responds to the infection during disease progression. We applied microarray analysis of the whole genome transcriptome to peripheral blood mononuclear cells (PBMCs) taken from severe and mild COVID-19 patients as well as healthy controls. Functional enrichment analysis of genes associated with COVID-19 severity indicated that disease progression is featured by overactivation of myeloid cells and deficient T cell function. The upregulation of TLR6 and MMP9, which promote the neutrophils-mediated inflammatory response, and the downregulation of SKAP1 and LAG3, which regulate T cells function, were associated with disease severity. Importantly, the regulation of these four genes was absent in patients with influenza A (H1N1). And compared with stimulation with hemagglutinin (HA) of H1N1 virus, the regulation pattern of these genes was unique in PBMCs response to Spike protein of SARS-CoV-2 ex vivo. Our data also suggested that severe SARS-CoV-2 infection largely silenced the response of type I interferons (IFNs) and altered the proportion of immune cells, providing a potential mechanism for the hypercytokinemia. This study indicates that SARS-CoV-2 infection impairs inflammatory and immune signatures in patients, especially those at severe stage. The potential mechanisms underpinning severe COVID-19 progression include overactive myeloid cells, impaired function of T cells, and inadequate induction of type I IFNs signaling.


Subject(s)
COVID-19/immunology , Leukocytes, Mononuclear/immunology , SARS-CoV-2/immunology , Signal Transduction/immunology , Adolescent , Adult , Aged , Antigens, CD/immunology , Female , Gene Expression Profiling , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human/immunology , Interferon Type I/immunology , Male , Matrix Metalloproteinase 9/immunology , Middle Aged , Phosphoproteins/immunology , Toll-Like Receptor 6/immunology , Lymphocyte Activation Gene 3 Protein
19.
Ann Med ; 53(1): 197-207, 2021 12.
Article in English | MEDLINE | ID: covidwho-990290

ABSTRACT

BACKGROUND: COVID-19 counts 46 million people infected and killed more than 1.2 million. Hypoxaemia is one of the main clinical manifestations, especially in severe cases. HIF1α is a master transcription factor involved in the cellular response to oxygen levels. The immunopathogenesis of this severe form of COVID-19 is poorly understood. METHODS: We performed scRNAseq from leukocytes from five critically ill COVID-19 patients and characterized the expression of hypoxia-inducible factor1α and its transcriptionally regulated genes. Also performed metanalysis from the publicly available RNAseq data from COVID-19 bronchoalveolar cells. RESULTS: Critically-ill COVID-19 patients show a shift towards an immature myeloid profile in peripheral blood cells, including band neutrophils, immature monocytes, metamyelocytes, monocyte-macrophages, monocytoid precursors, and promyelocytes-myelocytes, together with mature monocytes and segmented neutrophils. May be the result of a physiological response known as emergency myelopoiesis. These cellular subsets and bronchoalveolar cells express HIF1α and their transcriptional targets related to inflammation (CXCL8, CXCR1, CXCR2, and CXCR4); virus sensing, (TLR2 and TLR4); and metabolism (SLC2A3, PFKFB3, PGK1, GAPDH and SOD2). CONCLUSIONS: The up-regulation and participation of HIF1α in events such as inflammation, immunometabolism, and TLR make it a potential molecular marker for COVID-19 severity and, interestingly, could represent a potential target for molecular therapy. Key messages Critically ill COVID-19 patients show emergency myelopoiesis. HIF1α and its transcriptionally regulated genes are expressed in immature myeloid cells which could serve as molecular targets. HIF1α and its transcriptionally regulated genes is also expressed in lung cells from critically ill COVID-19 patients which may partially explain the hypoxia related events.


Subject(s)
COVID-19/genetics , Critical Illness , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Myeloid Cells/metabolism , Sequence Analysis, RNA/methods , Female , Humans , Male , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Up-Regulation
20.
Cell Host Microbe ; 27(6): 863-869, 2020 06 10.
Article in English | MEDLINE | ID: covidwho-324343

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 has had devastating global impacts and will continue to have dramatic effects on public health for years to come. A better understanding of the immune response to SARS-CoV-2 will be critical for the application and development of therapeutics. The degree to which the innate immune response confers protection or induces pathogenesis through a dysregulated immune response remains unclear. In this review, we discuss what is known about the role of the innate immune system during SARS-CoV-2 infection, suggest directions for future studies, and evaluate proposed COVID-19 immunomodulating therapeutics.


Subject(s)
Coronavirus Infections/immunology , Immunity, Innate , Pneumonia, Viral/immunology , COVID-19 , Complement System Proteins/immunology , Coronavirus Infections/drug therapy , Coronavirus Infections/pathology , Cytokines/immunology , Humans , Killer Cells, Natural/immunology , Myeloid Cells/immunology , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/pathology
SELECTION OF CITATIONS
SEARCH DETAIL